
Chase Joyner

801 Homework 2

September 15, 2015

Problem 1:

Let W be an r × s random matrix, and let A and C be n × r and n × s matrices of constants,
respectively. Show that E(AW +C) = AE(W ) +C. If B is an s× t matrix of constants, show that
E(AWB) = AE(W )B. If s = 1, show that Cov(AW + C) = ACov(W )A′.

Solution: Notice that the ijth element of the matrix AW + C is

(AW + C)ij =

s∑
k=1

aikwkj + cij .

By linearity of expectations in one-dimension, we have

E

(
s∑

k=1

aikwkj + cij

)
=

s∑
k=1

aikE(wkj) + cij .

By definition of E(AW +C), we apply expectation to each element of this matrix. Therefore,
this proves that

E(AW + C) = AE(W ) + C.

Note by the first part of this question, we have E(AWB) = AE(WB). All we need to show
is that E(WB) = E(W )B. The ijth element of the matrix WB is

(WB)ij =

s∑
k=1

wikbkj .

Again, by linearity of expectations in one-dimension, we have

E

(
s∑

k=1

wikbkj

)
=

s∑
k=1

E(wik)bkj .

Therefore, by definition of E(WB), we take expectations component wise and so E(WB) =
E(W )B. Thus, E(AWB) = AE(W )B. Lastly, we show that if s = 1, then Cov(AW + C) =

1



ACov(W )A′. By definition of Covariances, we have

Cov(AW + C) = E[(AW + C)(AW + C)′]− E[AW + C]E[AW + C]′

= E[(AW )(AW )′ + (AW )C ′ + C(AW )′ + CC ′]

− (AE(W ))(AE(W ))′ +AE(W )C ′ + C(AE(W ))′ + CC ′

= AE[WW ′]A+AE(W )C ′ + CE(W ′)A′ + CC ′

−AE(W )E(W )′A′ −AE(W )C ′ − CE(W )A′ − CC ′

= AE(WW ′)A′ −AE(W )E(W )′A′

= A(E(WW ′)− E(W )E(W )′)A′

= ACov(W )A′.

Thus, we have proved the desired results.

Problem 2:

Show that Cov(Y ) is nonnegative definite for any random vector Y .

Solution: Assume that Y ∈ Rn and let x ∈ Rn. Then, by problem 1, we have

x′Cov(Y )x = Cov(x′Y ) = Var(x′Y ) ≥ 0.

Therefore, Cov(Y ) is nonnegative definite.

Problem 3:

Show that if Y is an r-dimensional random vector with Y ∼ N(µ, V ) and if B is a fixed n × r
matrix, then BY ∼ N(Bµ,BV B′).

Solution: Let Y be an r-dimensional random vector with Y ∼ N(µ, V ). Since V is a
symmetric matrix, we can decompose it as V = AA′ for some vector A. Then, we observe
that

Y
d
= AZ + µ.

Now let B be a fixed n× r matrix and so we have

BY
d
= BAZ +Bµ.

Noticing that (BA)(BA)′ = BAA′B′ = BV B′, we conclude BY ∼ N(Bµ,BV B′).
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Problem 4:

Let M be the o.p.m onto C(X). Show that (I −M) is the o.p.m onto C(X)⊥. Find tr(I −M) in
terms of r(X).

Solution: Let M be the o.p.m onto C(X), i.e.

x ∈ C(X) =⇒ Mx = x

y ∈ C(X)⊥ =⇒ My = 0.

Then for any x ∈ C(X),

Mx = x =⇒ Mx− x = 0 =⇒ (M − I)x = 0 =⇒ (I −M)x = 0.

For any y ∈ C(X)⊥,

My = 0 =⇒ My − y = −y =⇒ (M − I)y = −y =⇒ (I −M)y = y.

Therefore, we conclude that (I −M) is the o.p.m onto C(X)⊥. Now we find tr(I −M) in
terms of r(X). Let M = OO′, where O =

[
o1, ..., or

]
and o1, ..., or is an orthonormal basis for

C(X). By thm B.35, M is the o.p.m onto C(X). Then, we have

tr(I −M) = tr(I)− tr(M) = tr(I)− tr(OO′)

= n− r(OO′) = n− r(M) = n− r(X).

Therefore, we have tr(I −M) = n− r(X).

Problem 5:

For a linear model Y = Xβ+e, E(e) = 0, Cov(e) = σ2I, show that E(Y ) = Xβ and Cov(Y ) = σ2I.

Solution: By properties of expectations and covariance, we have

E(Y ) = E(Xβ + e) = Xβ + E(e) = Xβ

and

Cov(Y ) = Cov(Xβ + e) = Cov(e) = σ2I.

This shows the desired equalities.
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Problem 6:

Let Y = (y1, y2, y3)
′ with Y ∼ N(µ, V ), where

µ = (5, 6, 7)′

and

V =

2 0 1
0 3 2
1 2 4

 .
Find

(a) the marginal distribution of y1,

(b) the joint distribution of y1 and y2.

(c) the conditional distribution of y3 given y1 = u1 and y2 = u2,

(d) the conditional distribution of y3 given y1 = u1,

(e) the conditional distribution of y1 and y2 given y3 = u3,

(f) the correlations ρ12, ρ13, ρ23,

(g) the distribution of

Z =

[
2 1 0
1 1 1

]
Y +

[
−15
−18

]
,

(h) the characteristic functions of Y and Z.

Solution:

(a) Define the row vector B = (1, 0, 0). Then, by problem 3, we have

BY = y1 ∼ N(Bµ = 5, BV B′ = 2).

Therefore, the marginal distribution of y1 is N(5, 2).

(b) Define the matrix

B =

[
1 0 0
0 1 0

]
.

Then, again by problem 3, we have

BY =

[
y1
y2

]
∼ N

([
5
6

]
,

[
2 0
0 3

])
.
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(c) Let Y1 and Y2 be the vectors

Y1 =
[
y3
]

and Y2 =

[
y1
y2

]
.

Then we have that Y1 given Y2 = y˜2 follows a Normal distribution with

µ? = 7 +
[
1 2

] [2 0
0 3

]−1([
u1
u2

]
−
[
5
6

])
= 7 +

1

2
(u1 − 5) +

2

3
(u2 − 6)

and

V ? = 4−
[
1 2

] [2 0
0 3

]−1 [
1
2

]
=

13

6
.

Therefore, y3 | y1 = u1, y2 = u2 ∼ N
(
7 + 1

2(u1 − 5) + 2
3(u2 − 6), 13/6

)
.

(d) First, we must obtain the joint distribution of y1 and y3. Define the matrix

B =

[
1 0 0
0 0 1

]
.

Then, by problem 3,

BY =

[
y1
y3

]
∼ N

([
5
7

]
,

[
2 1
1 4

])
.

Let Y1 =
[
y3
]

and Y2 =
[
y1
]
. Then, Y1 given Y2 = u1 follows a Normal distribution with

µ? = 7 + 1(2)−1(u1 − 5) = 7 +
1

2
(u1 − 5)

and

V ? = 4− 1(2)−11 =
7

2
.

Therefore, y3 | y1 = u1 ∼ N
(
7 + 1

2(u1 − 5), 72
)
.

(e) Let Y1 and Y2 be the vectors

Y1 =

[
y1
y2

]
and Y2 =

[
y3
]
.

Then, we have that Y1 given Y2 = u3 follows a Normal distribution with

µ? =

[
5
6

]
+

[
1
2

]
(4)−1(u3 − 7) =

[
1
4u3 + 13

4
1
2u3 + 5

2

]
and

V ? =

[
2 0
0 3

]
−
[
1
2

]
(4)−1

[
1 2

]
=

[
7/4 −1/2
−1/2 2

]
.

Therefore, y1, y2 | y3 = u3 ∼ N(µ?, V ?).
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(f) Recall the formula for correlation

ρij =
σij√
σ2i σ

2
j

.

Therefore, we see

ρ12 =
v12√
v11v22

=
0√
2 · 3

= 0

ρ13 =
v13√
v11v33

=
1√
2 · 4

=
1√
8

ρ23 =
v23√
v22v33

=
2√
3 · 4

=
2√
12
.

(g) Since Y ∼ N(µ, V ), then

Y
d
= AZ + µ.

Therefore, we have

BY + µ?
d
= BAZ +Bµ+ µ?.

This implies that BY + µ? ∼ N(Bµ+ µ?, BV B′), where

B =

[
2 1 0
1 1 1

]
and µ? =

[
−15
−18

]
.

Therefore, we have the distribution of Z to be

Z ∼ N
([

1
0

]
,

[
11 11
11 15

])
.

(h) Recall that the characteristic function for the multvariate normal distribution is

Φ(t) = exp

{
it′µ− 1

2
t′V t

}
.

Let t = (t1, t2, t3)
′. Then, we have that

ΦY (t) = exp

it′
5

6
7

− 1

2
t′

2 0 1
0 3 2
1 2 4

 t


and

ΦZ(t) = exp

{
it′
[
1
0

]
− 1

2
t′
[
11 11
11 15

]
t

}
.
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Problem 7:

The density of Y = (y1, y2, y3)
′ is

(2π)−3/2|V |−1/2e−Q/2,

where
Q = 2y21 + y22 + y23 + 2y1y2 − 8y1 − 4y2 + 8.

Find V −1 and µ.

Solution: This multivariate normal distribution can be written as

(2π)−3/2|V |−1/2 exp

{
−1

2
(Y − µ)′V −1(Y − µ)

}
.

This implies that

Q = (Y − µ)′V −1(Y − µ)

= Y ′V −1Y − 2µ′V −1Y + µ′V −1µ

= 2y21 + y22 + y23 + 2y1y2 − 8y1 − 4y2 + 8.

Solving the above equality for V −1 and µ, we find

V −1 =

2 1 0
1 1 0
0 0 1

 and µ =

2
0
0

 .
Problem 8:

Let Y = (y1, y2, y3)
′ ∼ N(µ, σ2I). Consider the quadratic forms defined by the matrices M1,M2,

and M3 given below.

M1 =
1

3
J3
3 , M2 =

1

14

 9 −3 −6
−3 1 2
−6 2 4

 , M3 =
1

42

 1 −5 4
−5 25 −20
4 −20 16

 .
(a) Find the distribution of each Y ′MiY .

(b) Show that the quadratic forms are pairwise independent.

(c) Show that the quadratic forms are mutually independent.

Solution:

(a) First we must show that Mi is an o.p.m for i = 1, 2, 3; i.e. MiMi = Mi and M ′i = Mi.
It is easily seen that M ′i = Mi for i = 1, 2, 3. Also, squaring each matrix will show that
Mi is idempotent for i = 1, 2, 3. Therefore, Mi is an o.p.m for i = 1, 2, 3. Now since
Y ∼ N(µ, σ2I) and Mi is idempotent, we have

Y ′MiY/σ
2 ∼ χ2

(
tr(Mi), µ

′Miµ/(2σ
2)
)

= χ2
(
1, µ′Miµ/(2σ

2)
)

for i = 1, 2, 3.
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(b) Recall that if Y ∼ N(µ, σ2I) and BA = 0, then Y ′AY and Y ′BY are independent.
Therefore, we just need to show that MiMj = 0 for i 6= j to establish pairwise indepen-
dence. So, we have

M1M2 =
1

3

1 1 1
1 1 1
1 1 1

3

1

14

 9 −3 −6
−3 1 2
−6 2 4

 =

0 0 0
0 0 0
0 0 0


M1M3 =

1

3

1 1 1
1 1 1
1 1 1

3

1

42

 1 −5 4
−5 25 −20
4 −20 16

 =

0 0 0
0 0 0
0 0 0


M2M3 =

1

14

 9 −3 −6
−3 1 2
−6 2 4

 1

42

 1 −5 4
−5 25 −20
4 −20 16

 =

0 0 0
0 0 0
0 0 0


Therefore, we conclude that Y ′MiY are pairwise independent.

(c) To establish mutual independence, we will first show that the MiY ’s are mutually inde-
pendent. To do this, note by problem 3 we have the distributionM1Y

M2Y
M3Y

 =

M1

M2

M3

Y ∼ N
M1

M2

M3

µ, σ2
M1

M2

M3

 I
M1

M2

M3

′
= N

M1µ
M2µ
M3µ

 , σ2
M1M

′
1 M1M

′
2 M1M

′
3

M2M
′
1 M2M

′
2 M2M

′
3

M3M
′
1 M3M

′
2 M3M

′
3

 . (1)

By part (b), we conclude the covariance matrix in distribution (1) becomesM1Y
M2Y
M3Y

 ∼ N
M1µ

M2µ
M3µ

 , σ2
M1 0 0

0 M2 0
0 0 M3

 .

Since the off diagonals of the covariance matrix in this joint distribution are all 0,
the MiY ’s are mutually independent. Now consider the function of MiY , namely
(MiY )′(MiY ) = Y ′MiY . Since the MiY ’s are mutually independent, any function of
them should be as well. Thus, the Y ′MiY ’s are mutually independent.
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